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Abstract— Unsteady free convection flow in a horizontal channel with arbitrary wall temperatures has been
discussed in general. A physically meaningful exact solution of the problem has been obtained in a closed
form by the application of the standard finite sine transform technique. Influences of the governing
parameters, the Prandtl number and the Rayleigh number, to bring the flow and heat transfer to final steady
states have been discussed separately. For constant values of the arbitrary wall temperatures and of the
function, determining the average axial velocity, the final steady state is approached in different times
respectively for the cases when the Prandtl number Pr > 1 and Pr < 1. It is also seen that the function,
representing the axial temperature gradient, is influenced by none of the governing parameters; but the
steady state flow is influenced only by the Rayleigh number.

NOMENCLATURE
d, distance between the plates;
G, Green’s function;
g, acceleration due to gravity;
H, arbitrary function of 7;
k, thermal conductivity;
M, function, defined by equation (20);
m, variable integral number;
N, function, defined by equation (22);
n, variable integral number;
D, pressure;
Pr, Prandtl number ;
q, rate of heat transfer per unit area;
Ra, Rayleigh number;
T, temperature;
t, time;
U, nondimensional velocity;
u, velocity;
W, subscript for quantities at walls;
X, x-coordinate ;
Y, nondimensional y-coordinate;
Vs y-coordinate.
Greek symbols
o, thermal diffusivity of fluid ;
f, coefficient of thermal expansion ;
v, kinematic viscosity ;
Py density;
6, referring to nondimensional-temperature;
T, nondimensional time.

1. INTRODUCTION

HEAT-TRANSFER mechanism, involving flows in con-
tact with the walls which undergo a thermal transient
change, is important for its applications in various
industries. A problem, dealing with transient con-
vection was discussed for the first time by Izumi [1]
who considered transient free convection in an infinite
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circular tube of which the temperature is assumed to be
constant along its length. Subsequently Siegel [2]
worked on unsteady laminar flow in a duct with
unsteady heat addition. The combined transient free
and forced convection flow between two parallel
vertical plates was discussed by Zeiberg and Miiller
[3]. Tao [4] has extended it to the case of a flow in a
vertical circular tube.

Transient free convection horizontal laminar flow
between two infinite nonporous parallel plates has
been discussed by only a few workers. Gill and Casal
[5] have considered the steady state solution of a
particular case of this problem; but the most general
case along with a particular case in detail has been
considered by Mohanty [6]. He has changed the initial
steady state flow into an unsteady one by giving a
thermal transient to the walls with the help of a step
rise in the plate temperatures ; and has considered the
flow with constant axial temperature gradient as a
particular case. Introduction of step rise into plate
temperatures to convert the flow into transient con-
vection is limited in its applications as the case is too
ideal for industrial applications. Therefore there arises
a need to deal with the problem in a more general way,
so that a physically meaningful solution can be found
out for the most complicated case. Keeping the
physical situations in view, the problem has been
reconsidered in the present paper with wall tempera-
tures, given by arbitrary functions. A physically mean-
ingful exact solution of the problem has been obtained
in a closed form. It is seen that the nondimensional
function, representing axial temperature gradient, is
not influenced by the governing parameters, Pr and Ra
which are respectively the Prandt! number and the
Rayleigh number. If the arbitrary functions, represent-
ing wall temperatures, assume constant values, the
final steady state is approached in different times
separately for the cases when Pr < 1 and Pr > 1.
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2. BASIC EQUATIONS

The equations in Cartesian coordinates for con-
servation of momenta and energy for a fully developed
unsteady incompressible viscous flow between two
nonporous horizontal infinite parallel walls are given
by

ou 10 0u
Ez“;a—s”a?’ (1)
—%g—i=g[1~ﬁ(T—To)] @
and
oT 0T (PT &
E+ua=a<&7+a—y§). 3)

Where u, p, p, v, g, T, f and « are respectively the
velocity, the pressure, the density, the kinematic vis-
cosity, the acceleration due to gravity, the temperature,
the coefficient of thermal expansion and the thermal
diffusivity of the fiuid. T; is the temperature of a
reference state. The coordinate axes are chosen such
that the x-axis coincides with the lower plate; and the
y-axis is perpendicular to it. The upper plate is given by
y = d. It is to be noted that the viscous dissipation has
not been taken into account for considering the
balance of energy. Dissipation of energy generally
becomes significant in channel flows when the pressure
drop is of the order of one hundred atmospheres.
Therefore physically it is quite justifiable to neglect
dissipation in normal laminar flows where free con-
vection is considered to be of major importance.

Differentiating equation (1) with respect to x, we
have 8%p/ox? = 0, i.e. Op/dx is a function of y and ¢
only.

We write

% _ PR (4)

ox
Hence we have from (2) and (4)
T—T, = xTi(y, 1)+ To(y, t). )

It is to be noted here that for a flow with constant axial
pressure gradient, the temperature distribution is
given by T—T, = T»(y,t); but we will consider the
flow with an arbitrary pressure gradient. Therefore
from (3) and (5) we have

0T, af’T, eT, wd’T,
oz — T —x[ T
a8y SR PP (6)

Equation (6) is a parabolic equation in T,. It is possible
to obtain a Green’s function for (8/0t) — (x6%/0y?) with
the associated boundary and initial conditions. Denot-
ing the Green’s function by G(y, t;)', t’), the solution of
the equation (6) is given by

TZ(yv t) = JJ‘G()’J;}”J,)

0T, ad’T,
x[—uT,—x(——l_a 1>:Idt’dy'. 0

ot oy’

Since T, is independent of x, it is desirable that the
expression inside the square bracket in (7) should be
independent of x. Hence we have

0T, Tokll
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Differentiating (2) with respect to x, and substituting
from (4) and (5), we have

g ;y D pgbTi 1)
;

(10)

Considering the nondimensional quantities, defined
by

t % ud dT; T,
1=, Y=", U=—, §,=—~and 6, =—,
d d o Ty Ty
equations {8), (1), (9) and (10) can be rewritten as
09, a0,
-1 =0, 11
dY? ot (1)
gl (w—F (Y, 1) (12)
ray: e U
0, 0, U, =0 (13)
ay? o T
and
oF,
—— = RaPrb,, (14)
oY
where
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Fi(Y,0)=— (o, Pr=-
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is the Prandtl number, and

Togpd®
v

Ra =

is the Rayleigh number.

The set of equations (11)-(14) shows that the flow is
completely governed by two parameters Pr and Ra
only. It is observed from (12) that when Pr — 0, U /0t
should be quite small in order to have a proper balance
of the momentum equation. Physically this means that
for a flow with low Prandtl numbers, most of the mass
flow takes place under the action of viscous drag. This
happens due to the fact that the thermal diffusivity for
low Prandtl numbers is comparatively higher which
means that the thermal effects penetrate much deeper
into the fluid, as a result of which the temperature
distribution increases in the central core of the flow.
Increase in the temperature distribution retards the
fluid flow ; because it is observed from equation (2) that
increase in temperature increases the pressure gradient
along the y-axis which creates hinderance for the
longitudinal flow, causing a deceleration for the fluid
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particles. On the other hand, when Pr — oo the process
of convection dominates over the effects of diffusion.
So the temperature is carried away by the fluid
particles. Equation (12) shows that dU/dt should be
comparatively larger in this case. At the result of which
the horizontal flow is accelerated for comparatively
higher Prandtl numbers. It is further observed from
(12) and (14) that the Rayleigh number governs the
flow, being associated with the axial pressure gradient.
Assuming the heating from right (the flow is from left
to right), the nondimensional temperature gradient 8,
is positive. So that the flow is not subjected to the
stability considerations. Hence keeping the flow con-
ditions the same, if Ra increases in value, the axial
pressure gradient increases. Therefore it is observed
from (12) that the flow is retarded for higher values of
Ra. It is easy [ 6] to observe that for a prescribed axial
temperature gradient T, higher values of Ra create a
tendency for instability in the temperature
distribution.

3. SOLUTION OF THE EQUATIONS
Initially the fluid has the velocity and temperature
distributions, given by
U(Y,0) = Uy(Y),
0.(Y,0)=0,0(Y), and 8,(Y,0) = 0,,(Y).
(The values of these functions are given in the Appen-
dix of this paper.) For 7 > 0, the wall temperatures,
and the pressure gradient start to change with time.
These variations may be taken to be arbitrary and
simple as follows:
91(07T)=01w0(r)5 '92(0a ‘[): 92W0(T)5 } (16)
and Gl(la T) = Olwl (f), 02(1’ T) = BZWI(T)'
The no slip conditions at the walls supply the
boundary conditions for the velocity distribution. So

U, 1) = U(1, 1) = 0. (17

toas)

The solution of the equation (11) under the imposed
initial and boundary conditions is obtained by the
application of the standard finite sine transform
technique.

It is given by
01 =2. e—n-’nlr

n

X {nn J’ [GIWO(T) - ( —1 )"lel(’[)] . e"z":' -dr
V]

il 18

1

1
+f Blo(Y)sin(mzY)dY%sin(mzY). (18)
0

It is readily noticed from (18) that the axial tempera-
ture gradient is governed by none of the parameters Pr
and Ra. This is expected physically due to the follow-
ing fact: as the momentum transfer and heat-transfer
properties become effective only in the direction,
normal to the solid wall, the physical properties, given
by the viscosity and the thermal diffusivity of the fluid,
influence the velocity and temperature gradients only
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in the normal direction. Therefore it is quite normal
that the axial temperature gradient should not be
affected by Pr and Ra. It is interesting to observe that if
6,0 and 0, ,,, assume constant values, the final steady
state for the axial temperature gradient is approached
through oscillations which effectively damp out in a
nondimensional time of the order of 1/n2. Hence in a
channel of comparatively greater width, the axial
temperature gradient attains its final steady state in a
comparatively longer time.

Similarly equations (12) and (14) with the approp-
riate initial and boundary conditions give the velocity
distribution as

©
U=2- Z e—}’rnzm2

n=1

x (J {(—=M@)+[(= 1)~ 1]H ()} e’ " -de

0

v

1
+[ UO(Y)sin(nnY)dY>sin(nnY). (19)
0 /

Where
1 O
M(r):J [—2RaPr yoemii

0 m=1

X {j [BIWO(T)'— (—1 )mglwl(f)]
0

X emlr-rz2 -dt

1 1
+—J 010(Y)sin(mnY)dY}
mm Jo

X cos(mnY)] sin(nnY)dY. (20)
and H(r)is an arbitrary function which depends upon
the average axial velocity U(t), given by the continuity
equation

1
J Uy, 7)dY = U(1);

0
and is presented by

Fy(Y,1) = RaPr Jel dY+H(1).

It is seen from (19) and (20) that instead of being
influenced by the whole of the temperature distri-
bution at the walls, the velocity distribution is affected
only by the axial temperature gradients at the walls.
Leaving aside the natures of the functions, 8,,,4(),
0,1 (r) and H(7), it is observed that the final steady
state for the flow is approached through two modes of
oscillations which effectively damp out respectively in
nondimensional times of O(1/n*z?) and O(1/Prn? - 72).
The oscillations, involving dimensionless time
O(1/n*-n?) are introduced only through the axial
temperature gradients at the walls. It is observed from
(20) that in case of the axial temperature gradients at
both the walls are zero both in the initial steady state
(see the appendix) and in the state involving unsteady
wall temperatures, the final steady state is approached
through a single mode of oscillations, involving a
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dimensionless time O(1/Prn?-n?); if H(1) is assumed
to be constant. Hence for constant values of 0,,,4(t),
6,,,(r)and H(t), the final steady state is approached in
a nondimensional time of the order of 1/n?, if Pr > 1;
but if Pr < 1 the nondimensional time for the purpose
is of the order of 1/Pr-n2. Hence the flows with higher
Prandtl numbers attain the steady state comparatively
in a shorter time. As the Prandtl number goes on
decreasing, the time for attaining the steady state goes
on increasing.

It is further noticed that the Rayleigh number does
not affect the time for attaining the final steady state.
This is quite natural, as the unsteadiness of the flow is
caused mainly due to the temperature propagation
which is thoroughly controlled by the response to any
thermal change inside the fluid. This response to any
thermal change inside the fluid is carried out according
to the relative importance of the kinematic viscosity
and of the thermal diffusivity, ie. according to the
value of the Prandtl number. Therefore the time for
attending the final steady state is controlled only by
Pr; but not by Ra, as the Rayleigh number is affected
by the joint variation of v and « instead of depending
on their relative importance.

The arbitrary functions 0,,4(t), 6,,,(t) and H(z)
hinder the flow to attain its steady state quickly.
Functions, having larger amplitude, maintain the
unsteadiness of the flow for a longer time. If the
functions assume constant values, the unsteadiness of
the flow is purely due to exponential functions of time.

Solving (13) under the appropriate conditions for 6,
we have with the help of the same transform technique

e_"l'":”%”ﬂ [ I:HZWO(‘E)_(_ 1 )"02\4'1(‘[)] e"z'"

O
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It is observed respectively from (18), (19), (21) and
(24) that the axial temperature gradient depends on
0,.,0(t) and 6, ,,(r), the velocity distribution depends
on 6,,(1), 6,,,(1) and H(r), the temperature distri-
bution and the Nusselt number both depend on
01w0(1)s O1w1(t), O240(t), B2y,(1) and H(r) simul-
taneously. Taking account of this fact, looking at the
forms of the solutions, and considering the manner in
which these functions occur in the solutions, it can be
concluded that for a flow with given Prandtl and
Rayleigh numbers, the axial temperature gradient
attains its steady state earlier in comparison with the
velocity distribution which is quicker in attaining its
steady state in comparison with the temperature
distribution. It is noticed from (21) and (24) that unlike
0,, Nu is influenced by 6,,,,(t) and 8,,,,(r) through
their combinations respectively with 6, ,,(z) and
6,,1(t). Hence it is concluded that the unsteadiness of
the Nusselt number is maintained for a longer time
than that of the temperature distribution. Therefore
the rates of heat transfer from the plates become steady
only after the velocity and temperature distribution
attaining their steady states in the fluid.

It is to be noted from (21), (22) and (24) that
although the steady states for the temperature distri-
bution and for the Nusselt number are brought
comparatively in a more complicated way through
three modes of oscillation, finally it takes the time of
the same order of magnitude as is required in the case
of the velocity distribution for the effective damping
out of these oscillations. Hence for constant values of

1
)}
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The heat transfer is expressed in terms of the Nusselt number defined as Nu = d(q,,o — 4.,1 )k T, where q,,, and
g..1 represent the rates of heat transfer per unit area at the walls y = 0, and y = d respectively; and are given by

qwo =

k being the thermal conductivity. Therefore in nondimensional form the Nusselt number is presented by

08, \

oY

o0
Nu=< 2

Hence from (18) and (21) we have
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0
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810> O1w1s Bawo- and 6,,, and H, the velocity distri-
bution, the temperature distribution, and the Nusselt
number attain the final steady states in times which are
of the same order of magnitude. Therefore for flows
with Pr < 1, these quantities require a nondimensional
time of the order of 1/Pn*; and for the flows with Pr
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6. H. K. Mohanty, Transient free convection horizontal
laminar flow between two parallel plates, Acta Mechanica
15, 275 (1972).

APPENDIX
For the initial steady flow, the governing equations are
2

> 1, the time is of the order of 1/z? for the purpose. P 4, =F|(Y),

r——3 (a)
Hence according to the previous discussion, the axial dy
temperature gradient attains the final steady state d’8;, —o (b)
almost simultaneously along with the other quantities dy? 7
when Pr > 1; but when Pr < 1 it attains the steady and
state first; and the other quantities attain it later on. 40
dYZ;’ ~Ugbio=0 {)
where
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forced convection in circular tubes, J. Appl. Mech. 30, 257
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JO
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X BYP=5Y*+2Y)+ 1 i0uol Y =277+ ¥)]+ (Br001 — O20w0) Y+ D10m0- iy

It is to be noted that the steady state is governed only by a single parameter Ra, as it is seen from (12) that the flow is
governed by Pr only through 0U/ér. Physically it happens due to the following fact: The action of the viscous drag in a
flow becomes effective through the kinematic viscosity. The action of the pressure gradient which is influenced by the axial
temperature gradient becomes effective on the flow through the thermal diffusivity. The action of any other force on the
flow is revealed through the relative importance of the kinetic viscosity and of the thermal diffusivity i.e. by the Prandtl
number. As in the present case the flow takes place only under the action of the viscous drag and of the pressure gradient,

it is quite natural that the steady state flow should not be governed by the Prandtl number.

CONVECTION NATURELLE INSTATIONNAIRE DANS LES CANAUX
HORIZONTAUX AVEC DES TEMPERATURES DE PAROI ARBITRAIRES

Résumé— On discute sous Pangle général la convection naturelle instationnaire dans un canal horizontal
avec des températures arbitraires sur la paroi. On obtient une solution analytique exacte par application
de la technique classique de la transformation finie sinus. On discute séparément les influences des
parameétres actifs, le nombre de Prandtl et le nombre de Rayleigh, pour amener Pécoulement et le
transfert thermique a leur état permanent final. Pour des valeurs constantes des températures pariétales
arbitraires et de la fonction déterminant Ia vitesse moyenne axiale, I'état final permanent est approché
pour les cas ou P > 1 et P < 1. On voit que la fonction représentant le gradient axial de température nest
influencée par aucun des paramétres actifs, mais que I'écoulement en régime permanent est influencé
seulement par le nombre de Rayleigh.
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INSTATIONARE FREIE KONVEKTION IN HORIZONTALEN KANALEN
MIT BELIEBIGEN WANDTEMPERATUREN

Zusammenfassung— Die Stromung bei instationarer freier Konvektion in horizontalen Kanidlen mit
beliebigen Wandtemperaturen wurde allgemein diskutiert. Eine physikalisch sinnvolle, exakte Losung des
Problems wurde in geschlossener Form erhalten durch die Anwendung der Methode der endlichen
Sinustransformation. Einfliisse der Parameter, Prandtl-Zahl und Rayleigh-Zahl, welche den Ubergang
der Stromung und des Wirmetransports in den endgiiltigen stationdren Zustand bestimmen, wurden
getrennt diskutiert. Bei konstanten Werten der beliebig gewihlten Wandtemperaturen und der Funktion,
welche die mittlere axiale Geschwindigkeit bestimmt, wird der endgiiltige stationdre Zustind in
unterschiedlichen Zeiten erreicht, je nachdem ob die Prandtl-Zahl Pr > 1 oder Pr < 1 ist. Es wird auch
gezeigt, dafl die Funktion, welche den axialen Temperaturgradienten darstellt, von keinem der
bestimmenden Parameter beeinfluflt wird. Jedoch hingt die Stromung bei stationdrem Zustand nur von
der Rayleigh-Zahl ab.

HECTALMOHAPHASI ECTECTBEHHASI KOHBEKIIUA B T'OPU3OHTAJIbHbBIX
KAHAJIAX C [TPOM3BOJIBHOW TEMIIEPATYPOW CTEHOK

AnnoTaumn — PaccmatpuBaeTcs obuumii ciy4al HeCTAallMOHAPHOTO CBOOOIHOKOHBEKTHBHOTO TEYEHHS
B TOPM30OHTAJIbHOM KaHajle C MPOU3BONBHOM TemnepaTyoil creHok. C NOMOWBLIO CTAHAAPTHOTO
METOLA KOHEYHOIO CHHYC- NpeoOpa3oBaHHs NONYYEHO (H3MHYECKH ONpPABJAHHOE TOYHOE pelueHHe
3afa¥M B 3aMKHYTOM BHAe. OTIEIbHO paccCMaTpPHBaeTCs pPOJb OCHOBHBIX MapaMEeTpoB, YHCIA
MpauaTns u uncna Penes B NOCTHXEHHM OTOKOM M MEPEHOCOM Temyia KOHEYHOI'O CTALMOHAPHOIO
cocToaHus. Tlpy NOCTOAHHONH TemnepaType CTEHOK M MOCTOSHHOM 3HAYeHWH (YHKUHM, Ompeaens-
IOLIEH CPENHIOI AKCHAILHYIO CKOPOCTL TEYEHHs, KOHEYHOE CTaHHOHAPHOE COCTOSIHME [OCTHraeTcs
B pasnuiHoe BpeMs i uucen [lpanatns P> 1 u P < |. BoiicHeno taxke, 4To QYHKUMS, OMHUCHI-
BAIOLIAA aKCHAJIbHBIA IPaqMeHT TEMNEPaTypbl, HE 3aBHCHT OT OCHOBHBIX NAapaMETPOB, H TOJILKO
3Havyende yucia Penes okaibiBaeT BIHAHME HA CTAllMOHAPHOE TEYEHUE.



