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Abstract-Unsteady free convection flow in a horizontal channel with arbitrary wall temperatures has been 
discussed in general. A physically meaningful exact solution of the problem has been obtained in a closed 
form by the application of the standard finite sine transform technique. Influences of the governing 
parameters, the Prandtl number and the Rayleigh number, to bring the flow and heat transfer to final steady 
states have been discussed separately. For constant values of the arbitrary wall temperatures and of the 
function, determining the average axial velocity, the final steady state is approached in different times 
respectively for the cases when the Prandtl number Pr z 1 and Pr < 1. It is also seen that the function, 
representing the axial temperature gradient, is influenced by none of the governing parameters; but the 

steady state flow is influenced only by the Rayleigh number 

NOMENCLATURE 

distance between the plates ; 
Green’s function ; 
acceleration due to gravity; 
arbitrary function of r ; 
thermal conductivity; 
function, defined by equation (20) ; 
variable integral number; 
function, defined by equation (22); 
variable integral number; 

pressure ; 
Prandtl number; 
rate of heat transfer per unit area ; 
Rayleigh number; 
temperature; 
time; 
nondimensional velocity; 
velocity ; 
subscript for quantities at walls; 

.u-coordinate ; 
nondimensional y-coordinate; 
y-coordinate. 

Greek symbols 

i? 
thermal diffusivity of fluid ; 
coefficient of thermal expansion ; 

v, kinematic viscosity; 

P* density ; 
Q, referring to nondimensional-temperature; 

z, nondimensional time. 

1. INTRODUCTION 

HEAT-TRANSFER mechanism, involving flows in con- 
tact with the walls which undergo a thermal transient 
change, is important for its applications in various 
industries. A problem, dealing with transient con- 
vection was discussed for the first time by Izumi [I] 
who considered transient free convection in an infinite 

circular tube ofwhich the temperature is assumed to be 
constant along its length. Subsequently Siegel [2] 
worked on unsteady laminar flow in a duct with 
unsteady heat addition. The combined transient free 
and forced convection flow between two parallel 
vertical plates was discussed by Zeiberg and Miiller 
[3]. Tao [4] has extended it to the case of a flow in a 
vertical circular tube. 

Transient free convection horizontal laminar flow 
between two infinite nonporous parallel plates has 
been discussed by only a few workers. Gill and Casal 
[5] have considered the steady state solution of a 
particular case of this problem; but the most genera1 
case along with a particular case in detail has been 
considered by Mohanty [6]. He has changed the initial 
steady state flow into an unsteady one by giving a 
thermal transient to the walls with the help of a step 
rise in the plate temperatures; and has considered the 
flow with constant axial temperature gradient as a 
particular case. Introduction of step rise into plate 
temperatures to convert the flow into transient con- 
vection is limited in its applications as the case is too 
idea1 for industrial applications. Therefore there arises 
a need to deal with the problem in a more general way, 
so that a physically meaningful solution can be found 
out for the most complicated case. Keeping the 
physical situations in view, the problem has been 
reconsidered in the present paper with wall tempera- 
tures, given by arbitrary functions. A physically mean- 
ingful exact solution of the problem has been obtained 
in a closed form. It is seen that the nondimensional 
function, representing axial temperature gradient, is 
not influenced by the governing parameters, Pr and Ra 

which are respectively the Prandtl number and the 
Rayleigh number. If the arbitrary functions, represent- 
ing wall temperatures, assume constant values, the 
final steady state is approached in different times 
separately for the cases when Pr < 1 and Pr > 1. 

3x3 
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2. BASIC EQUATIONS 

The equations in Cartesian coordinates for con- 
servation of momenta and energy for a fully developed 
unsteady incompressible viscous flow between two 
nonporous horizontal infinite parallel walls are given 

by 

su 1 dP 2% 
- -- -+v--, 

t - p ax ay2 
(1) 

-; 2 = g[l -/l(T- T,)] 

and 

Where u, p, p, v, g, T, /I and c( are respectively the 
velocity, the pressure, the density, the kinematic vis- 
cosity, the acceleration due to gravity, the temperature, 
the coefficient of thermal expansion and the thermal 
diffusivity of the fluid. T, is the temperature of a 
reference state. The coordinate axes are chosen such 
that the x-axis coincides with the lower plate; and the 

y-axis is perpendicular to it. The upper plate is given by 
y = d. It is to be noted that the viscous dissipation has 
not been taken into account for considering the 
balance of energy. Dissipation of energy generally 
becomes significant in channel flows when the pressure 
drop is of the order of one hundred atmospheres. 
Therefore physically it is quite justifiable to neglect 
dissipation in normal laminar flows where free con- 
vection is considered to be of major importance. 

Differentiating equation (1) with respect to x, we 
have a2p/Zx2 = 0, i.e. 3p/dx is a function of y and t 
only. 

We write 

Hence we have from (2) and (4) 

T- To = xT,(y, t)+ T,(y, t). (5) 

It is to be noted here that for a flow with constant axial 
pressure gradient, the temperature distribution is 
given by ‘I-T’, = 7”(y, t); but we will consider the 
flow with an arbitrary pressure gradient. Therefore 
from (3) and (5) we have 

Equation (6) is a parabolic equation in T2. It is possible 
to obtain a Green’s function for (a/at) - (cd2/~y2) with 
the associated boundary and initial conditions. Denot- 
ing the Green’s function by G(y, t ;y', t'), the solution of 
the equation (6) is given by 

T,(Y, r) = 

x [-UT, -xr;-$)]dt’dy’. (7) 

Since T, is independent of x, it is desirable that the 
expression inside the square bracket in (7) should be 
independent of x. Hence we have 

(8) 

so 

(9) 

Differentiating (2) with respect to x, and substituting 
from (4) and (5) we have 

Considering the nondimensional quantities, defined 

by 

ud dT, G T=’ Y=s, U=--, (l,=Tand@,=T, 
d2’ a 0 0 

equations (8), (1) (9) and (10) can be rewritten as 

a%, ao, ---= 
i7Y2 at 0, 

d2U au 
pr*-_z = Fl(Y, 71, 

gy+& =o, 

(11) 

(12) 

(13) 

and 

EF, 
_ = RaPrB,, 
dY 

where 

is the Prandtl number, and 

(14) 

Todd3 
Ra = ___ 

VU 

is the Rayleigh number. 
The set of equations (1 l)-(14) shows that the flow is 

completely governed by two parameters Pr and Ra 
only. It is observed from (12) that when Pr -+ 0, aU/& 
should be quite small in order to have a proper balance 
of the momentum equation. Physically this means that 
for a flow with low Prandtl numbers, most of the mass 
flow takes place under the action of viscous drag. This 
happens due to the fact that the thermal diffusivity for 
low Prandtl numbers is comparatively higher which 
means that the thermal effects penetrate much deeper 

into the fluid, as a result of which the temperature 
distribution increases in the central core of the flow. 
Increase in the temperature distribution retards the 
fluid flow; because it is observed from equation (2) that 
increase in temperature increases the pressure gradient 
along the y-axis which creates hinderance for the 
longitudinal flow, causing a deceleration for the fluid 
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particles. On the other hand, when Pr -+ cc the process 
of convection dominates over the effects of diffusion. 

So the temperature is carried away by the fluid 
particles. Equation (12) shows that dU/ar should be 
comparatively larger in this case. At the result of which 
the horizontal flow is accelerated for comparatively 
higher Prandtl numbers. It is further observed from 
(12) and (14) that the Rayleigh number governs the 
flow, being associated with the axial pressure gradient. 
Assuming the heating from right (the flow is from left 
to right), the nondimensional temperature gradient 0r 
is positive. So that the flow is not subjected to the 
stability considerations. Hence keeping the flow con- 
ditions the same, if Ra increases in value, the axial 
pressure gradient increases. Therefore it is observed 
from (12) that the flow is retarded for higher values of 
Ra. It is easy [6] to observe that for a prescribed axial 
temperature gradient T,, higher values of Rn create a 
tendency for instability in the temperature 
distribution. 

3. SOLUTION OF THE EQUATIONS 

Initially the fluid has the velocity and temperature 
distributions, given by 

U(Y, 0) = U,(Y), 

e,(Y,O)=e,,(Y),andB,(Y,O)=8,,(Y). 1 
(15) 

(The values of these functions are given in the Appen- 
dix of this paper.) For r > 0, the wall temperatures, 
and the pressure gradient start to change with time. 
These variations may be taken to be arbitrary and 
simple as follows: 

&(O,r) = Qiwo(r), &(O,r) = QzwO(r), 

and ~,(l,r)=9,,,(r), B2(l,r)=&,,(r). 1 
(16) 

The no slip conditions at the walls supply the 
boundary conditions for the velocity distribution. So 

u(O, 5) = u(l, T) = 0. (17) 

The solution of the equation (11) under the imposed 
initial and boundary conditions is obtained by the 
application of the standard finite sine transform 
technique. 

It is given by 

8, = 2. 2 e-n’n’r 
n= 1 

x nn 
{ s 

r[8~~,o(T)-(-l)“~,,,(~)].e”2n’r~dT 
0 

s 

1 
+ B,,(Y)sin(nnY)dY sin(nrrY). (18) 

0 1 

It is readily noticed from (18) that the axial tempera- 
ture gradient is governed by none of the parameters Pr 

and Ra. This is expected physically due to the follow- 
ing fact: as the momentum transfer and heat-transfer 
properties become effective only in the direction, 
normal to the solid wall, the physical properties, given 
by the viscosity and the thermal diffusivity of the fluid, 
influence the velocity and temperature gradients only 

in the normal direction. Therefore it is quite normal 

that the axial temperature gradient should not be 
affected by Pr and Ra. It is interesting to observe that if 

elwo and Qlwl assume constant values, the final steady 
state for the axial temperature gradient is approached 
through oscillations which effectively damp out in a 
nondimensional time of the order of l/r?. Hence in a 
channel of comparatively greater width, the axial 
temperature gradient attains its final steady state in a 
comparatively longer time. 

Similarly equations (12) and (14) with the approp- 

riate initial and boundary conditions give the velocity 
distribution as 

X 

(1 

r{-M(7)+[(-1)“- l]H(r)}ePrn’nz~r.dr 
0 

I 

+ 
r 

U,(Y)sin(nrrY)dY sin(nrcY). (19) 
“0 ) 

Where 
1 

h’f(T) = 

il 

-2RaPr g e-m2’n’.r 

0 WI=, 

X 

is 

r[e,,o(T)-(-l)mslwl(T)] 

0 

X e”I’r.n2.dT 

+’ 
I 

1 
B,,(Y)sin(mnY)dY 

mn 0 1 

x cos(nnrY) 
1 

sin(nrcY)dY. (20) 

and H(T) is an arbitrary function which depends upon 
the average axial velocity O(t), given by the continuity 
equation 

f.1 
(Y, r)dY = U(T); ! u 

0 

and is presented by 

F,(Y,t) = RaPr 
s 

B,dY+H(r). 

It is seen from (19) and (20) that instead of being 
influenced by the whole of the temperature distri- 
bution at the walls, the velocity distribution is affected 
only by the axial temperature gradients at the walls. 
Leaving aside the natures of the functions, Oiwo(t), 
B,,,(r) and H(r), it is observed that the final steady 
state for the flow is approached through two modes of 
oscillations which effectively damp out respectively in 
nondimensional times of O( l/n2n2) and 0(1/Pm2. n2). 
The oscillations, involving dimensionless time 
0(1/n’. n2) are introduced only through the axial 
temperature gradients at the walls. It is observed from 
(20) that in case of the axial temperature gradients at 
both the walls are zero both in the initial steady state 
(see the appendix) and in the state involving unsteady 
wall temperatures, the final steady state is approached 
through a single mode of oscillations, involving a 
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dimensionless time 0( l/P& ‘7~‘); if H(7) is assumed 
to be constant. Hence for constant values of 81,,,o(7), 

H,,, (7) and H(7), the final steady state is approached in 
a nondimensional time of the order of l/n’, if Pr > 1; 
but if Pr < 1 the nondimensional time for the purpose 
is of the order of 1/Pr.7c2. Hence the flows with higher 
Prandtl numbers attain the steady state comparatively 
in a shorter time. As the Prandtl number goes on 
decreasing, the time for attaining the steady state goes 
on increasing. 

It is further noticed that the Rayleigh number does 
not affect the time for attaining the final steady state. 

This is quite natural, as the unsteadiness of the flow is 
caused mainly due to the temperature propagation 
which is thoroughly controlled by the response to any 
thermal change inside the fluid. This response to any 
thermal change inside the fluid is carried out according 
to the relative importance of the kinematic viscosity 
and of the thermal diffusivity, i.e. according to the 
value of the Prandtl number. Therefore the time for 
attending the tinal steady state is controlled only by 
Pr ; but not by Ru, as the Rayleigh number is affected 
by the joint variation of 1’ and a instead of depending 
on their relative importance. 

The arbitrary functions O,,,(t), Olwl(r) and W(7) 
hinder the flow to attain its steady state quickly. 
Functions, having larger amplitude, maintain the 
unsteadiness of the flow for a longer time. If the 
functions assume constant values, the unsteadiness of 
the flow is purely due to exponential functions of time. 

Solving (13) under the appropriate conditions for H,, 

we have with the help of the same transform technique 

It is observed respectively from (18), (19), (21) and 
(24) that the axial temperature gradient depends on 
Q,,,(z) and Q,,,(T), the velocity distribution depends 
on 01,,,(7), f!IIwI(7) and H(s), the temperature distri- 
bution and the Nusselt number both depend on 

QIwO(7), ~,,,(7), ~2wO(7), o,,,(7) and H(7) sid- 
taneously. Taking account of this fact, looking at the 
forms of the solutions, and considering the manner in 
which these functions occur in the solutions, it can be 
concluded that for a flow with given Prandtl and 

Rayleigh numbers, the axial temperature gradient 
attains its steady state earlier in comparison with the 

velocity distribution which is quicker in attaining its 
steady state in comparison with the temperature 
distribution. It is noticed from (21) and (24) that unlike 
O,, Nu is influenced by .92w,,(7) and 8,,,(t) through 
their combinations respectively with f?,,,,,(z) and 
Q,,,(7). Hence it is concluded that the unsteadiness of 
the Nusselt number is maintained for a longer time 
than that of the temperature distribution. Therefore 
the rates of heat transfer from the plates become steady 
only after the velocity and temperature distribution 
attaining their steady states in the fluid. 

It is to be noted from (21), (22) and (24) that 
although the steady states for the temperature distri- 
bution and for the Nusselt number are brought 
comparatively in a more complicated way through 
three modes of oscillation, finally it takes the time of 
the same order of magnitude as is required in the case 
of the velocity distribution for the effective damping 
out of these oscillations. Hence for constant values of 

.[B,,,(7)-(-I)“tl,~,,(7)]en’.““‘d7fN(7)+ (21). 

where 

N(T)=: < i 

-1 _(_,)m+fl-P 

I 
]-(_l)n-m+P l_(_l)n+m+P l_(_,)“-“-P 

+ - _ 

m-l p=, 
n+m-p n - m + p n+m+p n-m-p 1 

X .[H,,,.,(7)-(--)m~~~,l(7)]em’n’rd7+ O,,(Y)sin(mzY)dY[ 

cr j 1 

X ~-.hf(~)+[(-l)~-l]H(~)~e~~~‘~‘~~d7+ U,(Y)sin(pzY)dY e-(m’-“‘+P,p2)n’.r.d7, (22) 

.0 0 

The heat transfer is expressed in terms of the Nusselt number defined as Nu = d(q,, - qwl)/kT, where qwo and 
qwl represent the rates of heat transfer per unit area at the walls y = 0, and y = d respectively; and are given by 

= -,“T 
I 

aT 
q,o ay_ y=o' 

and q,,,, = -k - 
I ay y=d' 

k being the therma. conductivity. Therefore in nondimensional form the Nusselt number is presented by 

(23) 

Hence from (18) and (2 I ) we have 

Nu = -4n. i i[e,,,(7)+e2,,(7)l-(-l)n[e,,,(7)+e,,,(7)]} 
n= 1.3,5... 

x e”‘il’i.d7+N(7)+ 
.i 

’ [B,,(Y)+CI,,(Y)]sin(nnY)dY 
1 

. (24) 
0 
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0 lWO? @lnslr ~2woy and tfzwl and N, the velocity distri- 

bution, the tempera?ure distribution, and the Nusselt 
number attain the final steady states in times which are 

of the same order of magnitude. Therefore for flows 

with Pr < 1, these quantities requirea nondimensional 
time of the order of ~/PA’; and for the flows with Pr 

> 1, the time is of the order of I/n2 for the purpose. 
Hence according to the previous discussion, the axial 
temperature gradient attains the final steady state 
almost simuhaneously along with the other quantities 

when Pr > 1; but when Pr < 1 it attains the steady 
state first; and the other quantities attain it later on. 

6. H. K. Mohanty, Transient free convection horizontal 
laminar flow between two parallel plates, Acta Mechanica 
15,275 (1972). 

APPENDIX 

For the initial steady flow, the governing equations are 

Pig = F,(Y), 

and 
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U,(Y) = (R0/12)[o.1(el,,, -e,,,0)(5Y4-9y~+4y) 

+0 ,owo(2Y3-3YZ+ Y)]-6tf,(Y2- Y) (h) 

i 

I 

where 0, = U(Y)dY; and 
.0 

o,,(Y) = Ra[(1,z0400)(8,,,, -e,,w,,~2(50Y7- 189y5+ 140~$- Y) 

+ (0 ~0wd~44w~,,x~, -elowO )(IOY6-18Y5+ Y4+8Y3- Y) 

+ (1!720)0:,,, (~Y~-I~Y~+IoY~- Y)]-0,[(1!fo)(e,,,,-N,,,,,) 

x (3yS-5y4+2y)+f,e,o,,(y4-2y3+Y)~+je2Ou~,-e20wO)~+e,,,,. (i) 

It is to be noted that the steady state is governed only by a single parameter Ra, as ii is seen from (12) that the flow is 
governed by Pr only through dU/&. Physically it happens due to the following fact: The action of the viscous drag in a 
flow becomes effective through the kinematic viscosity. The action of the pressure gradient which is influenced by the axial 
temperature gradient becomes elfective on the flow through the thermal dilfusivity. The action of any other force on the 
flow is reveaIed through the relative importance of the kinetic viscosity and of the thermal diffusivitg i.e. by the Prandtl 
number. As in the present case the flow takes place only under the action of the viscous drag and of the pressure gradient, 
it is quite natural that the steady state flow should not be governed by the Prandtl number. 

CONVECTION NATURELLE INSTATIONNAIRE DANS LES CANAUX 
HORIZONTAUX AVEC DES TEMPERATURES DE PAR01 ARBITRAIRES 

R&sum&On discute sous I’angie gineral la convection nature& instationnaire dans un canal horizontal 
avec des temperatures arbitraires sur la paroi. On obtient une solution analytique exacte par application 
de la technique classique de la transfo~ation finie sinus. On discute s~par~ment les influences des 
param~tres actifs. le nombre de Pmndtl et Ie nombre de Rayleigh, pour amener l%coulement et le 
transfert thermique 1 leur &at permanent final. Pour des valeurs constantes des temperatures par&ales 
arbitraires et de la fonction determinant la vitesse moyenne axiale, l’etat final permanent est approche 
pour les cas oti P > 1 et P < 1. On voit que la fonction representant le gradient axial de temperature n’est 
inlluencee par aucun des paramttres actifs, mais que l’boulement en regime permanent est influence 

seulement par le nombre de Rayleigh. 
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FREIE KONVEKTION HORIZONTALEN KAN;I;LEN 
BELIEBIGEN WANDTEMPERATUREN 

Zusammenfassung-Die Striimung bei instationarer frcier Konvektion in horizontalen Kanllen mit 
beliebigen Wandtemperaturen wurde allgemein diskutiert. Eine physikalisch sinnvolle. exakte Losung des 
Problems wurde in geschlossener Form erhalten durch die Anwendung der Methode der e,ndlichen 
Sinustransformation. Einfltisse der Parameter, Prandtl-Zahl und Rayleigh-Zahl. welche den Ubergang 
der Stromung und des Warmetransports in den endgtiltigen stationaren Zustand bestimmen. wurden 
getrennt diskutiert. Bei konstanten Werten der beliebig gewihlten Wandtemperaturen und der Funktion, 
welche die mittlere axiale Geschwindigkeit bestimmt, wird der endgiiltige stationare Zustlnd in 
unterschiedlichen Zeiten erreicht, je ndchdem ob die Prdndti-Zahl Pr > 1 oder Pr < I ist. Es wird such 
gezeigt, daR die Funktion, welche den axialen Temperaturgradienten darstellt, von keinem der 
bestimmenden Parameter beeinflugt wird. Jedoch hangt die Stromung bei stationarem Zustand nur von 

der Rayleigh-Zahl ab. 

HECTAHHOHAPHAH ECTECTBEHHAR KOHBEKHMR B FOPM30HTAJIbHblX 
KAHAJIAX C ITPOR3BOJlbHO~ TEMHEPATYPOR CTEHOK 

AHuoTauna - PXCMBTpHBBeTCR 06IWifi CJl)Wfi HIXTBllWOHBPHOrO CBO6OAHOKOHBeKTABHO~O TeYeHAII 
B rOp&i30HTaJlbHOM KaHane C npOH3BOnbHOii TeMnepaTyOti CTeHOK. c nOMO"JbH) CTaHnapTHOrO 
Mefona KoHevHoro CHH~C- npeo6pa30saHse nonygeH0 @ixviecKn 0npaBnaHHoe T04Hoe peureHue 

3a1111'W B JaMKHyTOM BUAe. &neJIbHO PaCCMaTpHBaeTC!? pOJIb OCHOBHbIX na,,aMeTpOB, W,C,,a 

n~HnTJWl U ‘IHCJlil kJl@l B IWCTkiXCHHki IIOTOKOM W IICp(?HOCOM TetlJta KOHe’iHOrO CTaUkiOHapHOrO 

C~CTO~IH~~I. npu nocTonHHoii TeMnepaType cTeHoK u nocTonHHoM 3Ha9eHH)i (PYHKUHH, onpenena- 

EOlUeti CpeLtHlOHJ aKCHaJlbHyH) CKOpoCTb TeWHBR, KOHe4HOe CTaUHOHapHOe COCTOIlHUe AOCTBraeTCI 

B pasneqaoe B~~MX nns recen npaHnTnR P> 1 u P-z I. BbIXCHeHO TaKxe. 'iTO (PYHKUHR, onucbt- 
Batoman aKcrianbttbtti rpanaettr TeMneparypbt, He 3aBUCHT OT OCHOBHbIX napaMeTpOB, U TOnbKO 

3HaqeHBe qncna Penes otca3bmaer nnllanne Ha craueouaptioe reqemie. 


